当前位置: 首页>学术活动专栏
字体大小:[ ]    

青椒学术沙龙(第113期)预告——催化新材料表面原子结构调控和性能研究

发布时间:2018-04-25

时间:2018年4月27日(周五)中午12点30分

 

地点:北洋园校区郑东图书馆四层日新书斋

报告题目:催化新材料表面原子结构调控和性能研究

主讲人:凌涛

 

【个人简介】

凌涛,天津大学材料学院教授。2009年于清华大学材料科学与工程系获得博士学位,2009年10月起就职于天津大学。2015年至2016年在澳大利亚阿德莱德大学化工学院乔世璋教授研究组做访问学者。2017年入选国家自然科学基金优秀青年基金。从事新型纳米结构设计、表面原子结构表征及在能源转换器件(如量子点太阳能电池、燃料电池)、高性能催化(如电催化、光电催化)等领域的应用研究。以第一/通讯作者在Nature Communications(两篇)、Nano Letters、Advanced Materials(三篇)、Advanced Functional Materials、Nano Energy等期刊发表论文30多篇,多篇被Advanced Materials、Nanoscale、Journal of Materials Chemistry以封面形式报道。

【报告内容简介】

控制催化剂表面原子结构是提高催化剂性能的有效途径。对于非贵金属及负载型贵金属催化剂,表面电子结构可控制备及原子尺度结构与催化性能关系研究仍然具有巨大挑战。我们利用气相阳离子交换的方法在导电基底上大面积可控制备表面洁净的高活性金属氧化物纳米线催化剂。该方法不同于常规的催化剂制备方法,气相离子交换过程主要由动力学控制,易于在高表面能且富含空位的晶面进行,这些特点使该方法制备的催化剂具有很高的催化活性。我们还利用此种金属纳米线作为载体,有效调控了贵金属催化剂的表面原子及电子结构。

【相关学科】新能源材料,原子结构调控,能量存储与转换应用

【主办单位】校工会、图书馆、科研院、校青年教师联谊会、学生创新实践协会

Lecture: Engineering surface atomic structures of electrocatalysts

When: 12:30 p.m., Friday,XX

Where: Rixin Study, Fourth Floor, Zheng Dong Library, Peiyang Park Campus

Lecturer: Tao LING

About the Lecture:

The growing concerns over climate change and energy security have stimulated a rapid development in the generation of clean energy. Electrocatalysts play a key role in sustainable energy production, including fuel cells, metal-air batteries and water splitting. Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts.

Recently, we reported tuning of the atomic structure of cobalt (II) oxide (CoO) nanorods (NRs) by creating oxygen vacancies on pyramidal nanofacets. These CoO NRs exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO NRs are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions.

Much recently, we showed that atomic and electronic coupling of Pt nanopariticles (NPs) with pyramidal nanofacets enclosed CoO NRs to produce hybrid nanocatalysts.1 Based on experimental observations and theoretical calculations, we demonstrate that strong atomic and electronic interactions between Pt NPs and SC CoO NRs directly lead to (i) atomically perfect interface and desired Pt faceting, which maximizes the surface area of intrinsically active {111} nanofacets, (ii) favorable down-shifting d-band center of Pt, which can achieve optimal energetics for intermediates in reactions, and (iii) superior long-term durability. As a result, such Pt NPs/SC CoO NRs hybrid catalysts exhibit a substantially enhanced ORR activity and durability in comparison to the Pt benchmark.

Organizers: Trade Unions, Library, Office of Science and Technology, Young Teachers Association, Student Association of Innovation and Practicums

All students and staff of Tianjin University are welcome.

 

相关文章